The force diagram of the given system is shown below:
where,
N: normal force = Wy
Wy: component of the weight W perpendicular to the incline = Wcosθ
Wx: component of the weight W parallel to the incline = Wsinθ
W: weight of block 1 = m1*g
W2: weight of block 2 = m2*g
T: tension on the cord
Fr: friction force = μN
i) The acceleration of the two blocks is the same.
The sum of forces on the first block along the direction of the incline is (equation 1):
![\begin{gathered} T-F_r-W_x=m_1\cdot a \\ T-\mu N-m_1g\sin \theta=m_1\cdot a \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4ydsc6e956y6yd0mph4ziee0ra6vxvduif.png)
The sum of forces along the direction perpendicular to the incline is (equation 2):
![\begin{gathered} W_y+N=0 \\ N=W_y=m_1g\cos \theta \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3lfwuqo5e9xgilhom810bxdlzk2d5togau.png)
The sum of forces on the second block is (equation 3):
![m_2g-T=m_2\cdot a](https://img.qammunity.org/2023/formulas/physics/college/tyhh12dr97zeffk7i5prl7tsin1sikn9qm.png)
Now, add the first and third equation, solve for a, and replace the expression for N, as follow:
![\begin{gathered} T-\mu N-m_1g\sin \theta+m_2g-T=m_1a+m_2a \\ a(m_1+m_2)=m_2g-\mu N-m_1g\sin \theta \\ a=(m_2g-\mu m_1g\cos\theta-m_1g\sin\theta)/(m_1+m_2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sc9z2z4swcc61mk1si0pznnjsu9l63jael.png)
The previous expression is the result for the acceleration of the two blocks.
ii) And the tension is:
![\begin{gathered} T=m_2g-m_2a \\ T=m_2g-m_2((m_2g-\mu m_1g\cos\theta-m_1g\sin\theta)/(m_1+m_2)) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/frebd21shjbvx2ye7nocdbrzmn5au0wtoy.png)