Given:
The rate of change of volume of the cone V = 26 cubic feet per minute.
We need to find the rate of change of height at height = 50 feet.
The height = twice the radius.
![h=2r](https://img.qammunity.org/2023/formulas/mathematics/high-school/yl7y2ve6kw1502g1z6hbjb4cl9p4uyou2e.png)
Divide both sides by 2, we get
![(h)/(2)=(2r)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mdzme0eaqi2mwucm9l00t5qt450rj9u58b.png)
![r=(h)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ah4z19tomzhju2d8x6ipam1ivmab4sbtnl.png)
Consider the volume of the cone.
![V=(1)/(3)h\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/k5lw90k4qk8guk20wgk007s5mxm9yvq0en.png)
![\text{Substitute }r=(h)/(2)\text{ in the formula.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ly8bkodd2ejzdbjhl6i8iz9qc2grw38bc7.png)
![V=(1)/(3)h\pi((h)/(2)_{})^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/dstwyrmfpt1kdv5ddg69vzpbiawo9ncvx6.png)
![V=(1)/(3)h\pi(h^2)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/i7y05lqk4kykk8xq5waxvxah75y9b7z2ba.png)
![V=(\pi)/(12)h^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/j1jkngxvey4c25gnbh3w0r6kq3eumi1cnb.png)
Differentiate with respect to t.
![(dV)/(dt)=(\pi)/(12)*3h^2*(dh)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s8ynnwy2f2g9cifuhcci447ra8r6qrtq1e.png)
![\text{Substitute }(dV)/(dt)=26\text{ and }h=50\text{ in the equation.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f84szmq7t3aupdgeu21jyr749xvb7z44c7.png)
![26=(\pi)/(12)*3(50)^2*(dh)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wm17p6l43bwp8eenmmx3t2qc34ky5ccli8.png)
![26=1962.5*(dh)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pvlz09nxdk3m4jit3hf3w07ifu6bef10uj.png)
Dividing both sides by 1962.5, we get
![(26)/(1962.5)=(dh)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/403xez7ybjewxihhrs83gbvy07yjebdsk5.png)
![(dh)/(dt)=0.0132\text{ f}eet\text{ per minute}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8yu7z3bl7wxvf92f2jakmth9ttbndxpdtm.png)
The height of the pile is increasing by 0.01 feet per minute at the instant when the pile is 50 feet high.