Answer:
y=2cos(x-30)+2
Step-by-step explanation:
The general form of the cosine function is given:
![\begin{gathered} y=A\cos (B(x+C))+D \\ A=\text{Amplitude} \\ Period,T=(2\pi)/(B)=(360)/(B)(in\text{ degr}ees) \\ C=\text{Phase Shift} \\ D=\text{Vertical Shift} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4p3zhl81hq8jpssrxkg4mgp6rctyvf5vco.png)
Find the value of A using the maximum value.
![A=(1)/(2)*4=2](https://img.qammunity.org/2023/formulas/mathematics/college/ffrfq1a15bsc0xbb51ko5u1m7worizet4o.png)
The period of the graph is 360 degrees. B is calculated below:
![\begin{gathered} (2*180)/(B)=360 \\ 360B=360 \\ B=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hdn770dxk8g4yoag2jj7bz93mqgre0g1r4.png)
If Phase shift = 30 degrees (to the right)
![C=-30](https://img.qammunity.org/2023/formulas/mathematics/college/98oq1u9mh90w12pq948he18es4gtprcuer.png)
Vertical Displacement = 2 units up
![D=2](https://img.qammunity.org/2023/formulas/mathematics/college/txb54tiliz7exh4fokgv7qi7n5uhnajc5k.png)
The period of the graph is calculated below:
![\begin{gathered} (2*180)/(B)=360 \\ 360B=360 \\ B=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hdn770dxk8g4yoag2jj7bz93mqgre0g1r4.png)
Thus, the graph with the given properties is:
![y=2\cos \mleft(x-30\mright)+2](https://img.qammunity.org/2023/formulas/mathematics/college/3pr5zjc33yu4m7u98ldlaf5lzpa5amvvz1.png)