![\text{Log}_4((64)/(x))=3-Log_4x](https://img.qammunity.org/2023/formulas/mathematics/college/zemo280e42ckg9sbefx9723kq7auup7fsm.png)
Here, we want to use logarithmic properties to expand the given expression;
We are going to use the following properties of logarithms;
![\text{Log}_a((x)/(y))=Log_ax-Log_ay](https://img.qammunity.org/2023/formulas/mathematics/college/sugvtgklucgf0gmvwsthsnexldqacqzilx.png)
Applying that in the case of the question, we have;
![\text{Log}_4((64)/(x))=Log_464-Log_4x](https://img.qammunity.org/2023/formulas/mathematics/college/a7i4yl7iuov7u3p08likqry6t04p7c57dp.png)
Furthermore;
![Log_aa^2=2Log_aa_{_{}}_{}](https://img.qammunity.org/2023/formulas/mathematics/college/y1gbtxq2sp90k29sd38so1zaufmv7m2a8h.png)
Kindly recall that;
![64=4^3](https://img.qammunity.org/2023/formulas/mathematics/college/i7ct0e3gn0af4sqjm3461vq5cf30y1ihoh.png)
Thus, we have;
![\text{Log}_464=Log_44^3=3Log_44](https://img.qammunity.org/2023/formulas/mathematics/college/etfahzpc8kjlbzwqn4q9r7yrnxd8kkrlqz.png)
Also, an important logarithmic property to use is that;
![Log_aa=1_{}](https://img.qammunity.org/2023/formulas/mathematics/college/95pyob0ird727xvutbr3x0ggxhazrx7ppy.png)
Thus, we have;
![3og_44\text{ = 3}](https://img.qammunity.org/2023/formulas/mathematics/college/a8jjy0coq2usdryxdgapieps1kvujsmqgo.png)
So finally we have;
![\text{Log}_4((64)/(x))=3-Log_4x](https://img.qammunity.org/2023/formulas/mathematics/college/zemo280e42ckg9sbefx9723kq7auup7fsm.png)