Answer::
![(-\infty,-4)\cup(7,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/tv2dvdtbezp5lj6ryfbiav3tdvkf8mx1b2.png)
Explanation:
Given the function:
![3\left(x+4\right)\left(x-7\right)^3](https://img.qammunity.org/2023/formulas/mathematics/college/mduju5s8ivb8ktmv8ems3i321d35rylj1t.png)
We want to determine the interval in which the function is greater than 0.
First, solve for the critical values.
![\begin{gathered} 3\left(x+4\right)\left(x-7\right)^3=0 \\ x+4=0,x-7=0 \\ x=-4,x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/owxhltgtwg965y9vzm0vu3n4r4421ypzcz.png)
So, the following are the possible intervals:
![\begin{gathered} (-\infty,-4) \\ (-4,7) \\ (7,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/17049dulagyz0wbvso5o7ckp2lmrbw9v3j.png)
We test each of the intervals:
![\begin{gathered} (-\infty,-4),\text{ At }x=-5:3\left(x+4\right)\left(x-7\right)^3=5184>0 \\ (-4,7),\text{ At x}=0:3\left(x+4\right)\left(x-7\right)^3=-4116<0 \\ (7,\infty),\text{ At }x=8:3\left(x+4\right)\left(x-7\right)^3=36>0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jn78m5a9e2822qs7gt34r74xd9mac0r0ge.png)
Therefore, the function is greater than zero in the intervals:
![(-\infty,-4)\cup(7,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/tv2dvdtbezp5lj6ryfbiav3tdvkf8mx1b2.png)
The result can be confirmed using the graph below: