From the given graph, we have 2 points with coordinates:
![\begin{gathered} (x_1,y_1)=(1,2) \\ \text{and} \\ (x_2,y_2)=(4,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g95tipxf8ksghhvjx43fp1aia304nglvvw.png)
The equation of a line in slope-intercept form is given by
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
With the given points, we can find the slope m as follows:
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ \text{then} \\ m=(1-2)/(4-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ugfpyalm7fkv33nnunfzhqshct0eggqtcy.png)
which gives
![m=(-1)/(3)=-(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/yjnku9dtdn5xeyslxsrnsc49tmxkdqff0l.png)
Then, our line equation has the form
![y=-(1)/(3)x+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/xue4834kut24g4n1i26pd6ipqt843wek2o.png)
Now, we can find the y-intercept b by substituting one of the two given points. For instance, if we substitute point (1,2) into the last result, we get
![2=-(1)/(3)(1)+b](https://img.qammunity.org/2023/formulas/mathematics/college/sfe4katf13ghiq8gp3byu2khyg6ldhkvve.png)
which gives
![\begin{gathered} 2=-(1)/(3)+b \\ \text{then} \\ 2+(1)/(3)=b \\ (7)/(3)=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2tzsdgonvvesm9pv8zr52dw3m3zy12iaht.png)
then, the line equations is
![y=-(1)/(3)x+(7)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/trqib1umzai8qxmyschstmb6v1mgybtzhg.png)
a) The linear function is
![f(x)=-(1)/(3)x+(7)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/y7ltnquabwc0ip3k56f04h45q0kr7mavw5.png)
b) What is f(6)?
In this case, we have that x=6. Then, by replacing this value into our function, we get
![f(6)=-(1)/(3)(6)+(7)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/t07yy9si9wugmeyy9pel53z7xvvfir0863.png)
which gives
![\begin{gathered} f(6)=-(6)/(3)+(7)/(3) \\ f(6)=(-6+7)/(3) \\ f(6)=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w3sp1udunug0vue88vvugksy9fdojeagvn.png)
therefore, the answer for part b is
![(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rshimc01547v0bylxspiig5y5rp1hyhlbx.png)