Answer:
The TV is 3 inches tall.

Step-by-step explanation:
Given that the width of the TV is

And the TV is 5 inch TV, which means its diagonal is;

The height of the TV can be calculated using the Pythagoras Theorem;
![\begin{gathered} c^2=a^2+b^2 \\ b=\sqrt[]{c^2-a^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ccm8vt3uhpo83s53tjocvy9c4g6w7zkyw8.png)
substituting the diagonal and the width;
![\begin{gathered} b=\sqrt[]{5^2-4^2} \\ b=\sqrt[]{25-16} \\ b=\sqrt[]{9} \\ b=3\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2k8iqb4eu5s1ens8adckavqqlhihqqc8mm.png)
Therefore, the TV is 3 inches tall.
