164k views
5 votes
I can’t figure this out!! My answer is way different then the book!

I can’t figure this out!! My answer is way different then the book!-example-1
User Bob Walsh
by
6.7k points

1 Answer

2 votes

Given:


(1)/(3)p^3\text{ + }(3)/(4)p^2\text{ - p -\lbrack}(1)/(2)p^3\text{ + }(1)/(3)p^2\text{ + }(1)/(2)p]

Simplifying:


\begin{gathered} =\text{ }(1)/(3)p^3\text{ + }(3)/(4)p^2\text{ - p -}(1)/(2)p^3\text{ - }(1)/(3)p^2\text{ - }(1)/(2)p \\ Collect\text{ like terms} \\ =\text{ }(1)/(3)p^3\text{ - }(1)/(2)p^3\text{ + }(3)/(4)p^2\text{ - }(1)/(3)p^2\text{ - p - }(1)/(2)p \end{gathered}

Simplifying further:


\begin{gathered} =\text{ }(2-3)/(6)p^3\text{ +}(9-4)/(12)\text{ p}^2\text{ +}(-2-1)/(2)p \\ =-(1)/(6)p^3\text{ + }(5)/(12)p^2\text{ - }(3)/(2)p \end{gathered}

Answer:


=-(1)/(6)p^3\text{ + }(5)/(12)p^2\text{ - }(3)/(2)p

User Kishore Reddy
by
6.7k points