99.1k views
0 votes
Solve: 9x^2+2x= -3 , using the quadratic formula

User Losbear
by
7.5k points

1 Answer

3 votes

SOLUTION

Given the question in the question tab, the following are the solution steps to answer the question.

STEP 1: Write the given quadratic equation.


9x^2+2x=-3

STEP 2: Express the equation in the standard quadratic form


\begin{gathered} \text{standard form}=ax^2+bx+c=0 \\ 9x^2+2x=-3 \\ \text{Add 3 to both sides} \\ 9x^2+2x+3=-3+3 \\ 9x^2+2x+3=0 \end{gathered}

STEP 3: Write the quadratic formula


x_1,x_2=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

STEP 4: Write the needed parameters to substitute into the formula


\begin{gathered} 9x^2+2x+3=0 \\ a=9,b=2,c=3 \end{gathered}

STEP 5: Substitute the values into the formula and solve for x


\begin{gathered} x_(1,2)=(-2\pm√(2^2-4\cdot\:9\cdot\:3))/(2\cdot\:9) \\ \text{simplify }\sqrt[]{2^2-4\cdot\: 9\cdot\: 3} \\ \sqrt[]{2^2-4\cdot\: 9\cdot\: 3}=\sqrt[]{4-108}=\sqrt[]{-104}=2√(26)i \\ x_(1,\: 2)=\frac{-2\pm\sqrt[]{2^2-4\cdot9\cdot3}}{2\cdot\: 9}=(-2\pm\:2√(26)i)/(2\cdot\:9) \\ \mathrm{Separate\: the\: solutions} \\ x_1=(-2+2√(26)i)/(2\cdot\:9),\: x_2=(-2-2√(26)i)/(2\cdot\:9) \\ \frac{-2+2\sqrt[]{26}i}{2\cdot\: 9}=-(1)/(9)+\frac{\sqrt[]{26}}{9}i_{} \\ \frac{-2-2\sqrt[]{26}i}{2\cdot\: 9}=-(1)/(9)-\frac{\sqrt[]{26}}{9}i \\ x=-(1)/(9)+\frac{\sqrt[]{26}}{9}i\text{ or }-(1)/(9)-\frac{\sqrt[]{26}}{9}i \end{gathered}

Hence, the roots of the equations are:


\begin{gathered} x_1=-(1)/(9)+\frac{\sqrt[]{26}}{9}i \\ x_2=-(1)/(9)-\frac{\sqrt[]{26}}{9}i \end{gathered}

User Jasica
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories