16.9k views
3 votes
Find the Lateral Area and Surface Area of the figure.1310Perimeter of the base =Slant height =(Note: 13 is NOT the slant height)Area of the base =square unitsL.A. =square unitsS.A. =square unitsBlank 1:Blank 2:Blank 3:Blank 4:Blank 5:

Find the Lateral Area and Surface Area of the figure.1310Perimeter of the base =Slant-example-1
User FuzzyWuzzy
by
4.0k points

1 Answer

2 votes

The formula for the perimeter of the base (square) is ,


P=4a

where,


a=\text{side of the base}=10

Therefore,


\text{Perimeter}=4*10=40\text{units}

Let us now solve for the slant height(l),

To solve for l, we will make use of Pythagoras theorem


\begin{gathered} 13^2=l^2+5^2 \\ 169=l^2+25 \\ 169-25=l^2 \\ 144=l^2 \\ \Rightarrow l^2=144 \\ l=\sqrt[]{144}=12\text{units} \\ l=12\text{units} \end{gathered}

Hence, the slant height is 12units.

The formula for the Lateral Area(LA) is given as,


LA=Pl

Therefore,


\begin{gathered} LA=40\text{units}*12units=480units^2 \\ LA=480unit^2^{} \end{gathered}

Hence, the Lateral area is 480unit².

The formula for the Surface area(SA) is,


\begin{gathered} SA=\text{base area+lateral area} \\ \end{gathered}

where the base area(B) is,


\begin{gathered} B=a^2 \\ a=10units \\ B=(10\text{unit)}^2 \\ B=100\text{units}^2 \end{gathered}

Hence, the Surface area is,


\begin{gathered} SA=100\text{units}^2+480\text{units}^2 \\ SA=580\text{units}^2 \end{gathered}

Hence, the Surface area is 580unit².

Find the Lateral Area and Surface Area of the figure.1310Perimeter of the base =Slant-example-1
User El Mismo Sol
by
4.9k points