Given
The height of an equilateral triangle is, 9 feet.
To find the area of an equilateral triangle
The area of an equilateral triangle is,

Since h=9 feet.
Then the value of b is measured using pythagoras theorem.

Then for h=9,
![\begin{gathered} 9^2=(3)/(4)a^2 \\ 81\cdot(4)/(3)=a^2 \\ a^2=27\cdot4 \\ a=\sqrt[]{9\cdot3\cdot4} \\ a=6\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xbar5nednaf19asliyj4a3ggaquhy5boy2.png)
Then the area will be,
![\begin{gathered} A=(1)/(2)\cdot b\cdot h \\ A=(1)/(2)\cdot a\cdot h \\ A=(1)/(2)\cdot6\sqrt[]{3}\cdot9 \\ A=27\sqrt[]{3}=46.77sq.feet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lydq7iwvqve56vn7q40x85y1aurgt1pg0b.png)