We can get the exponential function that defines the relationship between Uranium left and the time
The general formula for the exponential function is
![f(t)=ab^t](https://img.qammunity.org/2023/formulas/mathematics/college/obwh683p38mu00iwzhx3uqauc97a1u6yiq.png)
The scope of the question requires that we find the value of a and b in the function above
For the first data, when t=0, f(t)=100
![\begin{gathered} 100=a* b^0 \\ 100=a*1 \\ 100=a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/54xe0wkl81rndijqg7zigr4ms8xlarldhr.png)
Thus
![a=100](https://img.qammunity.org/2023/formulas/mathematics/college/nnzsc8wial6e9gr2c7xomaipq4selw3tuq.png)
The next step will be to find b.
from the third data, when t=1, f(t)=25
![\begin{gathered} 25=a* b^1 \\ \text{but we now know that a=100} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cfl0vozhn17edo6kla9cmi6gzphmal2yfn.png)
we will then solve for b
![\begin{gathered} 25=100* b \\ b=(25)/(100)=0.25 \\ b=0.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a610ml53qw28ssa3414yjmlrkhrgvwb30g.png)
The final step will be to substitute the values of a and b into the formula
![f(t)=100(0.25)^t](https://img.qammunity.org/2023/formulas/mathematics/college/vkm3bin1oqpir99nmushsyh2ar6mz17tud.png)
The final answer is option A