Answer:
x=0, x=1.772
Step-by-step explanation:
Given the equation:
![-5\cos ^2(x)+4\cos (x)+1=0](https://img.qammunity.org/2023/formulas/mathematics/college/37wrdketacpwen0yf1w4tg7ne6lxy4tsc5.png)
Let cos(x)=p
![\begin{gathered} -5\cos ^2(x)+4\cos (x)+1=0 \\ \implies-5p^2+4p+1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j9oyvbmx6ewkhhgss1y9ujhkg2qxcuzjpk.png)
First, solve the equation above for p:
![\begin{gathered} -5p^2+5p-p+1=0 \\ -5p(p-1)-1(p-1)=0 \\ (-5p-1)(p-1)=0 \\ -5p-1=0\text{ or }p-1=0 \\ \implies p=-(1)/(5)\text{ or }p=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m3xy4vycejtqqe1ipmckbf40k5gnejwnih.png)
Recall that we made the substitution: cos(x)=p
When p=1
![\begin{gathered} \cos (x)=1 \\ x=\cos ^(-1)(1) \\ x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/67yk7gpvm1pgm7sj8sydwtg68slr80zzj5.png)
When p=-1/5
![\begin{gathered} \cos (x)=-(1)/(5) \\ x=\cos ^(-1)(-(1)/(5)) \\ x=1.772\text{ (in radians)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/li2xkm7ri68fc8bwo70dc6g3dc018pcin5.png)
The smallest non-negative solutions to the equation are 0 and 1.772.