66.1k views
5 votes
Hi, can you help me to evaluate (if possible) thesix trigonometric functions of the real number.Please.

Hi, can you help me to evaluate (if possible) thesix trigonometric functions of the-example-1

1 Answer

4 votes

Okay, here we have this:

Considering the provided angle, we are going to evaluate the trigonometric functions, so we obtain the following:

Sine:


\begin{gathered} \sin (-(2\pi)/(3)) \\ =-\sin ((2\pi)/(3)) \\ =-\cos \mleft((\pi)/(2)-(2\pi)/(3)\mright) \\ =-\cos \mleft(-(\pi)/(6)\mright) \\ =-\cos \mleft((\pi)/(6)\mright) \\ =-(√(3))/(2) \end{gathered}

Cos:


\begin{gathered} cos\mleft(-(2\pi)/(3)\mright) \\ =\cos \mleft((2\pi)/(3)\mright) \\ =\sin \mleft((\pi)/(2)-(2\pi)/(3)\mright) \\ =\sin \mleft(-(\pi)/(6)\mright) \\ =-\sin \mleft((\pi)/(6)\mright) \\ =-(1)/(2) \end{gathered}

Tan:


\begin{gathered} tan\mleft(-(2\pi\:)/(3)\mright) \\ =(\sin (-(2\pi\: )/(3)))/(\cos (-(2\pi\: )/(3))) \\ =\frac{-\frac{\sqrt[]{3}}{2}}{-(1)/(2)} \\ =\sqrt[]{3} \end{gathered}

Csc:


\begin{gathered} \csc \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\sin\left(-(2\pi)/(3)\right)) \\ =-(1)/((√(3))/(2)) \\ =-(2√(3))/(3) \end{gathered}

Sec:


\begin{gathered} \sec \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\cos\left(-(2\pi)/(3)\right)) \\ =(1)/(-(1)/(2)) \\ =-2 \end{gathered}

Cot:


\begin{gathered} \cot \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\tan (-(2\pi)/(3))) \\ =\frac{1}{\sqrt[]{3}} \\ =(√(3))/(3) \end{gathered}

User Izydorr
by
3.4k points