Given:
The rate of change in volume = 12 cubic feet per minute.
We need to find the rate of change of radius at radius = 6 feet.
Consider the formula to find the volume of the sphere.
![V=(4)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zraet4fw93vx9gjz3iextthjo546ibcpwc.png)
Differentiate with respect to t.
![(dV)/(dt)=(4)/(3)\pi*3r^2*(dr)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hdxqq9ab9a5di5jxp62yrumvkeg4kntgx8.png)
![\text{ Substitute }(dV)/(dt)=12\text{ and r=6 in the formula.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/303bacx2svg1ciht9k5fdejomkbhpwf90z.png)
![12=(4)/(3)\pi*3(6)^2*(dr)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/uq0hpgoaf7yi03vt4txhmk4bzkobqqpkiv.png)
![12=144\pi*(dr)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xuxrm2ouc8cwpr1zvghpvxgfb18w6zqqaj.png)
Dividing both sides by 144pi, we get
![(12)/(144\pi)=(dr)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1jee6c8em7yrii2ou6zsbqwttqrhmzfoir.png)
![(dr)/(dt)=(1)/(12\pi)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbp8xfkm9filfki0cz5bg3206kiwqgzr0k.png)
![(dr)/(dt)=(1)/(37.68)=0.0265\text{ feet per minute}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y3m50xone58icvvg57mkz0f16gry4bnngo.png)
Hence the radius of the balloon increases by 0.03 feet per minute.