![70km](https://img.qammunity.org/2023/formulas/mathematics/college/xawjqfjo7p0p6inw81zszv29m133n2fcn1.png)
1) Whenever we have problems that deal with the real distance and distance on the map, we can write out the following formula:
![\begin{gathered} Scale=(distance\: on\: the \: map)/(real\: distance) \\ S=(3.5)/(R) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s8q33bz17euytt61cy7ykciq0yhmi2ue0h.png)
So, let's call the Real distance "R". Note that in this question, 1 centimeter represents 20 kilometers
2) So, in order to plug that as the scale we need to convert kilometers to centimeters:
![\begin{gathered} 1km--100000cm \\ 20km---x \\ x=2000000cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lojndboznqqxk7p3pqv0099h3e4kgahm60.png)
3) Finally, we can plug that into the formula and cross multiply the ratios this way:
![\begin{gathered} (3.5)/(r)=(1)/(2000000) \\ r=2000000*3.5 \\ r=7000000cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/emqg0ypjjo6rrax3p9ollxyrbfdw30u14d.png)
Converting it back to kilometers we can write:
![(7000000)/(100000)=70km](https://img.qammunity.org/2023/formulas/mathematics/college/t8arcuv4ehd9x1oo2utarqupexubud41ub.png)