41.9k views
1 vote
Sketch a right triangle corresponding to the trigonometric function of the acute angle 8. Then find the exact values of the other five trigonometric functions of

Sketch a right triangle corresponding to the trigonometric function of the acute angle-example-1
User LJP
by
7.9k points

1 Answer

3 votes

Solution:

Given:


cot(\theta)=2

Using the trig ratio of cot;


\begin{gathered} cot\theta=(1)/(tan\theta) \\ tan\theta=(opposite)/(adjacent) \\ Hence, \\ cot\theta=(adjacent)/(opposite) \\ cot\theta=(2)/(1) \\ adjacent=2 \\ opposite=1 \end{gathered}

The hypotenuse is gotten using the Pythagoras theorem;


\begin{gathered} h^2=2^2+1^2 \\ h^2=4+1 \\ h^2=5 \\ h=√(5) \end{gathered}

Thus, the sketch of the right triangle is;


\begin{gathered} Thus, \\ opposite=1 \\ adjacent=2 \\ hypotenuse=√(5) \end{gathered}

Hence,


\begin{gathered} sin\theta=(opposite)/(hypotenuse) \\ sin\theta=(1)/(√(5)) \\ sin\theta=(1)/(√(5))*(√(5))/(√(5))=(√(5))/(5) \\ sin\theta=(√(5))/(5) \end{gathered}
\begin{gathered} cos\theta=(adjacent)/(hypotenuse) \\ cos\theta=(2)/(√(5)) \\ cos\theta=(2√(5))/(5) \end{gathered}
\begin{gathered} tan\theta=(opposite)/(adjacent) \\ tan\theta=(1)/(2) \end{gathered}
\begin{gathered} csc\theta=(1)/(sin\theta) \\ csc\theta=(1)/((√(5))/(5)) \\ csc\theta=√(5) \end{gathered}
\begin{gathered} sec\theta=(1)/(cos\theta) \\ sec\theta=(1)/((2√(5))/(5)) \\ sec\theta=(√(5))/(2) \end{gathered}

Sketch a right triangle corresponding to the trigonometric function of the acute angle-example-1
User Sharad
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories