Given:
![y=h(x)\text{ where }h(x)=f(-x)\text{ and }f(x)=x^2-4x+12.](https://img.qammunity.org/2023/formulas/mathematics/college/ej0h6optl72wuqr2mijl7yxloopz9ipse3.png)
Required:
We need to find the turning point of y=h(x).
Step-by-step explanation:
Replace x =-x in the function f(x) to find h(x).
![f(-x)=(-x)^2-4(-x)+12.](https://img.qammunity.org/2023/formulas/mathematics/college/7r2jc2h2t7xwx5yansa5o19k6si9o89jy2.png)
![f(-x)=x^2+4x+12.](https://img.qammunity.org/2023/formulas/mathematics/college/iuwrwcjf88eq1lm1n02ad7ki6xac5bal29.png)
Replace f(-x)=y in the equation.
![y=x^2+4x+12.](https://img.qammunity.org/2023/formulas/mathematics/college/ntokbmgs29mubqpyq98nw1lfidzalnip8l.png)
![y=x^2+2*2x+4+8.](https://img.qammunity.org/2023/formulas/mathematics/college/t6b4dmf6ax5fb1rd694oab5newsbafh7lk.png)
![y=x^2+2*2x+2^2+8.](https://img.qammunity.org/2023/formulas/mathematics/college/vmmf378a2bvjivq696nxqnp2fk7vs0dcbc.png)
![Use\text{ }(a^2+2ab+b^2)=(a+b)^2.](https://img.qammunity.org/2023/formulas/mathematics/college/to84auln5vngrohkzet1w7l0ito9sz3tkm.png)
![y=(x+2)^2+8.](https://img.qammunity.org/2023/formulas/mathematics/college/yv84xgcp7k842dnmniq0z8z042pznzdabl.png)
Which is of the form
![y=a(x-h)^2+k.](https://img.qammunity.org/2023/formulas/mathematics/college/7ytq9vga9m7hv8c2lst2qgac5xn6pgzhcw.png)
where a=1, h=-2, and k=8.
The point (h,k)=(-2,8) is the turning point.
Final answer:
The turning point of y=h(x) is (-2,8).