22.6k views
3 votes
Please help me ASAP!!

1 Answer

3 votes

We have to solve:


\begin{gathered} 2^x-3=(x-6)^2-4_{} \\ 2^x-3+4=(x-6)^2 \\ 2^x+1=(x-6)^2 \end{gathered}

We can not write a explicit expression to find the value of x, but we can test each option to see which one is correct:


\begin{gathered} x=5 \\ 2^5+1=(5-6)^2 \\ 33=(-1)^2\longrightarrow\text{Not true} \end{gathered}
\begin{gathered} x=3 \\ 2^3+1=(3-6)^2 \\ 8+1=(-3)^2 \\ 9=9\longrightarrow\text{True} \end{gathered}
\begin{gathered} x=4 \\ 2^4+1=(4-6)^2 \\ 17=(-2)^2\longrightarrow\text{Not true} \end{gathered}
\begin{gathered} x=-2 \\ 2^(-2)+1=(-2-6)^2 \\ (1)/(4)+1=(-8)^2\longrightarrow\text{Not true} \end{gathered}

Answer: x=3

User John Kenn
by
7.7k points