22.6k views
3 votes
Please help me ASAP!!

1 Answer

3 votes

We have to solve:


\begin{gathered} 2^x-3=(x-6)^2-4_{} \\ 2^x-3+4=(x-6)^2 \\ 2^x+1=(x-6)^2 \end{gathered}

We can not write a explicit expression to find the value of x, but we can test each option to see which one is correct:


\begin{gathered} x=5 \\ 2^5+1=(5-6)^2 \\ 33=(-1)^2\longrightarrow\text{Not true} \end{gathered}
\begin{gathered} x=3 \\ 2^3+1=(3-6)^2 \\ 8+1=(-3)^2 \\ 9=9\longrightarrow\text{True} \end{gathered}
\begin{gathered} x=4 \\ 2^4+1=(4-6)^2 \\ 17=(-2)^2\longrightarrow\text{Not true} \end{gathered}
\begin{gathered} x=-2 \\ 2^(-2)+1=(-2-6)^2 \\ (1)/(4)+1=(-8)^2\longrightarrow\text{Not true} \end{gathered}

Answer: x=3

User John Kenn
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories