Given the figure, we can deduce the following information:
Height=1/2 cm
Length=1/2 cm
Width= 1/6 cm
To determine the number of cubic blocks with a side length of 1/6 cm needed to fill the volume of the given prism, we first note that a cube has equal sides. So, the dimensions of the cube must be:
Height= 1/6 cm
Length=1/6 cm
Width=1/6 cm
Next, we get the volume of the cube by using the formula:
![\begin{gathered} Volume\text{ of the cube}=(Height)(Length)(Width) \\ =((1)/(6))((1)/(6))((1)/(6)) \\ Simplify \\ =(1)/(216)\text{ }cm^3\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8lavop2vjxp8y9b0oowjpdns8l81m1poyr.png)
Then, we get the volume of the given prism using the same formula:
![\begin{gathered} Volume\text{ of the given prism}=(He\imaginaryI ght)(Length)(W\imaginaryI dth) \\ =((1)/(2))((1)/(2))((1)/(6)) \\ =(1)/(24)\text{ }cm^3\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qi7vhhlo2jo74yguxyn54i4he91ycpdtex.png)
Now, we find the number cubic blocks by using the formula:
![\begin{gathered} Number\text{ }of\text{ cubic blocks}=\frac{Volume\text{ of the given prism}}{Volume\text{ of the cube}} \\ =((1)/(24))/((1)/(216)) \\ Simplify \\ =9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h3f94bvk1wo77qrs0loigt3t3diyz1658w.png)
Therefore, the answer is 9.