Given:
![\tan (7\pi)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/wakiqss29bt808y3qzkg3om6bnzvhvaye7.png)
To Determine: The identity that is equivalent to the given tangent
Note that, the identity rule below would be applied
![\tan (\alpha)/(2)=\sqrt[]{(1-\cos \alpha)/(1+\cos \alpha)}](https://img.qammunity.org/2023/formulas/mathematics/college/599wetzl4q932ktzjbhg3ktoyia0u86zee.png)
Also,
![\tan (\alpha)/(2)=(\sin \alpha)/(1+\cos \alpha)](https://img.qammunity.org/2023/formulas/mathematics/college/66kkrsx8422hsybnq97uzqlcnszdcj5so7.png)
And also,
![\tan (\alpha)/(2)=(1-\cos \alpha)/(\sin \alpha)](https://img.qammunity.org/2023/formulas/mathematics/college/zgp528ddkjhxhcg8cmbxav0xndyl8tf783.png)
From the given tangent, we can re-write it as below:
![\begin{gathered} \tan (7\pi)/(8)\cong\tan ((7\pi)/(4))/(2) \\ \text{Note} \\ (7\pi)/(8)=((7\pi)/(4))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/59tlkdichusxt6rziuyrwaa3pnqom2nfn3.png)
Therefore:
![\tan ((7\pi)/(4))/(2)=\sqrt[]{(1-\cos(7\pi)/(4))/(1+\cos(7\pi)/(4))}](https://img.qammunity.org/2023/formulas/mathematics/college/ac5gaj6b5okelelb8walna55w9z3n35u6q.png)
Also:
![\tan ((7\pi)/(4))/(2)=(\sin (7\pi)/(4))/(1+\cos (7\pi)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/l3lmnygkuwtwsh0b0jytg612oaexq8p8jr.png)
And also,
![\tan ((7\pi)/(4))/(2)=(1-\cos (7\pi)/(4))/(\sin (7\pi)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/j6u210f6ewov2ck2qcprldg02fu1vcg6pk.png)
It can be observed from the option provided, the correct options is
I and III only