Based on the given information, we can express the following
![\begin{gathered} h=1+t \\ h+t=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m9229xwuj7t6huxym5xjj52scfs94bu1gy.png)
Because the digit of hundreds is 1 more the tens, and they sum 11. Let's combine the function to find t
![\begin{gathered} h+t=11 \\ 1+t+t=11 \\ 2t=11-1 \\ t=(10)/(2)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d4sfelbpwl3wmraywbp9loaetbki4y82f8.png)
So, the digit of tens is 5.
Let's find the hundreds.
![h=1+t=1+5=6](https://img.qammunity.org/2023/formulas/mathematics/college/jnyykvea9mwx6gu739wyr05i724qwmdcho.png)
The number of hundreds is 6.
Hence, the number of blocks is 659.