Step 1. Find the dimensions of the left-hand side of the equation.
In this part of the equation what we have is:
![(\Delta P)/(L)](https://img.qammunity.org/2023/formulas/mathematics/college/7uwm6vriqj3lo5bd0fsyd47t2ohl4n3tzl.png)
Here Δ represents a change in P, in the end, ΔP and P have the same units
And we are indicated that the units of P and L are:
![\begin{gathered} P=\lbrack N\cdot m^2\rbrack \\ L=\lbrack m\rbrack \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ojkzwoll3w6h8h4mv8o69agnzzdvi0oont.png)
Note: we use [ ] to represent that they are units.
Thus in this left part of the equation, the units are:
![(\lbrack N\cdot m^2\rbrack)/(\lbrack m\rbrack)](https://img.qammunity.org/2023/formulas/mathematics/college/te1cywkg1ix54cqidby6rot8z94azftrqx.png)
Simplifying the m:
![\lbrack N\cdot m\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/6tneuooqqd4ktqbelln6bz253pc1gbjteu.png)
Step 2. We have found that the units on the left-hand side are N*m
Now, we have to find the units on the right-hand side.
On the right-hand side of the equation we have:
![(300(1-\phi^2)\mu U)/(2D^2\phi^3)+(175\rho U^2)/(100D\phi^3)](https://img.qammunity.org/2023/formulas/mathematics/college/rfu6ft0bp7ngqrde4ti9mzya2fx831imnm.png)
The units of the variables are:
![\begin{gathered} \phi=Dimensionless\text{ (no units)} \\ \mu=\lbrack Pa\cdot s\rbrack \\ U=\lbrack(m)/(s)\rbrack \\ D=\lbrack m\rbrack \\ \rho=\lbrack\frac{\operatorname{kg}}{m^3}\rbrack \end{gathered}]()
Substituting the units (we can ignore the numbers and the dimensionless terms):
![(300(1-\phi^2)\mu U)/(2D^2\phi^3)+(175\rho U^2)/(100D\phi^3)=(\lbrack Pa\cdot s\rbrack\lbrack(m)/(s)\rbrack)/(\lbrack m^2\rbrack)+(\lbrack(kg)/(m^3)\rbrack\lbrack(m^2)/(s^2)\rbrack)/(\lbrack m\rbrack)](https://img.qammunity.org/2023/formulas/mathematics/college/skz4vwebvme6x8041rst2wg74refiqd38x.png)
Simplifying the divisions and multiplications between the units:
![(\lbrack Pa\cdot m\rbrack)/(\lbrack m^2\rbrack)+(\lbrack(kg)/(ms^2)\rbrack)/(\lbrack m\rbrack)](https://img.qammunity.org/2023/formulas/mathematics/college/dsgu55rpftj23l4yv2m4x6s1b6hkkkajxv.png)
Simplifying further:
![\lbrack(Pa)/(m)\rbrack+\lbrack(kg)/(m^2s^2)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/nr6thb68a01ebn433e49kxjwbeucif05wm.png)
Since the units of Pascals can be also represented as:
![Pa=\lbrack(kg)/(m\cdot s^2)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/qgxm7ce8cixp1efx1ltab7ojz8bqabc9aw.png)
The second term can also be expressed as Pa/m:
![\lbrack(Pa)/(m)\rbrack+\lbrack(Pa)/(m)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/hj3nilx33zkjiou6fhwvile76of6z9an4e.png)
The addition of two terms with the same units does not change the units, thus, the units on the right-hand side are:
![\lbrack(Pa)/(m)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/61eg9fzj1wwfzivfde1h7iihebi3gv48ss.png)
Step 3. Compare.
The units on the left-hand side are:
![\lbrack N\cdot m\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/6tneuooqqd4ktqbelln6bz253pc1gbjteu.png)
And the units on the right-hand side are:
![\lbrack(Pa)/(m)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/61eg9fzj1wwfzivfde1h7iihebi3gv48ss.png)
To compare them, let's convert the units of the left-hand side to Pascals using the following known relation between Newtons and Pascals:
![\lbrack N\rbrack=\lbrack(Pa)/(m^2)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/vmx804p3qzi8slwpq8xq2kk8rw5rtg9nhk.png)
Using this, the units of the left-hand side are:
![\lbrack N\cdot m\rbrack=\lbrack(Pa)/(m^2)\cdot m\rbrack=\lbrack(Pa)/(m)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/122datrzcnhtkmawqxlwrl4xmmfh6s7uhm.png)
As you can see, The units of both sides are Pa/m, thus we have proven that the two sides are dimensionally consistent.