145k views
5 votes
Compute each sum below. If applicable, write your answer as a fraction.235(-) + (-)*² + ( )* … .. + D(3)² =6Σ (3) - Dj = 1C

Compute each sum below. If applicable, write your answer as a fraction.235(-) + (-)*² + ( )* … .. + D-example-1
User DontRelaX
by
4.7k points

1 Answer

1 vote

Given:


((1)/(4))+((1)/(4))^2+((1)/(4))^3+...+((1)/(4))^5
\sum_{j\mathop{=}1}^65(-3)^j

Required:

We need to compute the given sum.

Step-by-step explanation:

Consider the given sum.


((1)/(4))+((1)/(4))^2+((1)/(4))^3+...+((1)/(4))^5=((1)/(4))+((1)/(4))^2+((1)/(4))^3+((1)/(4))^4+((1)/(4))^5
Use\text{ \lparen}(1)/(4))^n=(1)/(4^n).
=(1)/(4)+(1)/(4^2)+(1)/(4^3)+(1)/(4^4)+(1)/(4^5)
The\text{ LCM is }4^5,\text{ make the denominator }4^5.
=(1*4^4)/(4*4^4)+(1*4^3)/(4^2*4^3)+(1*4^2)/(4^3*4^2)+(1*4)/(4^4*4)+(1)/(4^5)
=(4^4)/(4^5)+(4^3)/(4^5)+(4^2)/(4^5)+(4)/(4^5)+(1)/(4^5)
=(4^4+4^3+4^2+4+1)/(4^5)
=(341)/(1024)


((1)/(4))+((1)/(4))^2+((1)/(4))^3+...+((1)/(4))^5=(341)/(1024)

Consider the given expression.


\sum_{j\mathop{=}1}^65(-3)^j

Expand the sum.


\sum_{j\mathop{=}1}^65(-3)^j=5(-3)^1+5(-3)^2+5(-3)^3+5(-3)^4+5(-3)^5+5(-3)^6
=5(-3)+5(9)+5(-27)+5(81)+5(-243)+5(729)
=-15+45-135+405-1215+3645
=-15-135-1215+45+405+3645
=2730
\sum_{j\mathop{=}1}^65(-3)^j=2730

Final answer:


((1)/(4))+((1)/(4))^2+((1)/(4))^3+...+((1)/(4))^5=(341)/(1024)


\sum_{j\mathop{=}1}^65(-3)^j=2730

User Errata
by
4.1k points