Given the mass of the object, m= 8 kg.
Final speed of the object, v = 8 m/s
Initial speed of the object, u = 4 m/s
To find work done required to increase the speed from 4 m/s to 8 m/s
Work done = change in kinetic energy
Kinetic energy initially when speed is 4 m/s is given by
![KE._u=(1)/(2)mu^2](https://img.qammunity.org/2023/formulas/physics/college/rnkd8hf1i95wch9b17rbp4ec8k5nueswfb.png)
Substituting the values, initial kinetic energy will be
![\begin{gathered} K\mathrm{}E._u=(1)/(2)*8*4^2 \\ =64\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yxd8evn2rvmorv66ltzpaqgoejwlf5omj6.png)
Similarly, final kinetic energy will be
![\begin{gathered} K\mathrm{}E._v=(1)/(2)mv^2 \\ =(1)/(2)*8*8^2 \\ =256\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/tmkd1yj55tu7m2eebkojzlxgsq4h0gnhm7.png)
Work done will be
![\begin{gathered} W=K\mathrm{}E._v-K.E._u \\ =256-64 \\ =192\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/189nspy202e7ulfh0jf92c42ukx5p6lfip.png)
Thus, the required work done is 192 J.