Let the angle be 'x' degrees.
The complement (C) of the corresponding angle will be,
![C=90-x](https://img.qammunity.org/2023/formulas/mathematics/college/pg5kkxhytuktxx0pefv5kffuh2nrqivug6.png)
And the supplement (S) of the corresponding angle will be,
![S=180-x](https://img.qammunity.org/2023/formulas/mathematics/college/ql3w4nbq8bu6yvcxu6rb23hkjg9nkp6cj7.png)
According to the condition given in the problem,
![4C=2S-40^{}](https://img.qammunity.org/2023/formulas/mathematics/college/a2v7l27619e62cbyj10b2ov3rxkfqlr092.png)
Substitute the values,
![\begin{gathered} 4(90-x)=2(180-x)-40 \\ 360-4x=360-2x-40 \\ -4x=-2x-40 \\ 4x-2x=40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ule9dc4jozvhk68v7p2vf411p6ifclzemj.png)
Simplify the expression further,
![\begin{gathered} 2x=40 \\ x=(40)/(2) \\ x=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cau0fkyul2p66wcxb27aguw79b3qt890wl.png)
Substitute this value of 'x' to obtain the complement and supplement angles as follows,
![\begin{gathered} C=90-20=70 \\ S=180-20=160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xo15badrn7zut9jkdu5h2u1pe34b0jizdm.png)
Thus, the angle measures 20 degrees, its complement measures 70 degrees, while its supplement measures 160 degrees.