Answer:
![E\text{ : 361 mmHg}](https://img.qammunity.org/2023/formulas/chemistry/high-school/czn5j3zc4jjhgi6cjokv5fcmtjrap8lamz.png)
Step-by-step explanation:
Here, we want to get the vapour pressure of the compound at the given temperature
We can use the Clausius-Clapeyron equation for this
Mathematically, we have this as:
![\ln ((P_1)/(P_2))\text{ = -}(\Delta H)/(R)((1)/(T_1)-(1)/(T_2))](https://img.qammunity.org/2023/formulas/chemistry/high-school/6mesvzk4wodj0l5gwh50xfruppu1z0dktu.png)
So,let us identify the values:
P1 = 103 mmHg
P2 = ?
ΔH = 28,900
R = 8.31
T1 = 278 K
T2 = 309 K
We now proceed to substitute these values into the equation above as follows:
![\begin{gathered} \ln ((103)/(P_2))\text{ = -}(28900)/(8.31)((1)/(278)-(1)/(309)) \\ \\ \ln ((103)/(P_2))\text{ = -3477.74 (}(31)/(85902)) \\ \\ \ln ((103)/(P_2))\text{ = -1.255} \\ \\ e^(-1.255)\text{ = }(103)/(P_2) \\ P_2\text{ = 361 mmHg} \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/high-school/fj5j395sm12i79uagknjtpjg59aig4vi2o.png)