Solution:
Given that;
y varies directly with the square of x
![y\propto x^2](https://img.qammunity.org/2023/formulas/mathematics/college/ev2isem75zkkaaqeolezh4xqdf3esoax7y.png)
This expression above becomes
![\begin{gathered} y=kx^2 \\ Where\text{ k is the constant} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ta4m6y5p2bn4o2ccc7olgnpi8efh7yvibu.png)
When
![y=10\text{ and x}=5](https://img.qammunity.org/2023/formulas/mathematics/college/xchl1w8b75mm4onhu5h3rik8srddjpi2w8.png)
Substitute the values for x and y into the expression above to find k
![\begin{gathered} y=kx^2 \\ 10=k(5)^2 \\ 10=k(25) \\ 10=25k \\ Divide\text{ both sides 25} \\ (25k)/(25)=(10)/(25) \\ k=(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4n2sm9jt6qabctp0hxt3gahn2xdbvaccw3.png)
The expression becomes
![\begin{gathered} y=kx^2 \\ y=(2)/(5)x^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5tusulirepymw64kvx98ka68qwhko9w2vn.png)
a) The value of y when x = 20
![\begin{gathered} y=(2)/(5)x^2 \\ y=(2)/(5)(20)^2 \\ y=(2)/(5)(400) \\ y=160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iumst14ygxy9bok48iirel2ouf4wf6e580.png)
Hence, the value of y is 160
b) The value of x when y = 40
![\begin{gathered} y=(2)/(5)x^2 \\ 40=(2)/(5)x^2 \\ Crossmultiply \\ 40(5)=2x^2 \\ 200=2x^2 \\ Divide\text{ both sides by 2} \\ (200)/(2)=(2x^2)/(2) \\ 100=x^2 \\ x^2=100 \\ Square\text{ root of both sides} \\ √(x^2)=√(100) \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/powj7wgbahc87rry520exl13qs4al0i3ei.png)
Hence, the value of x is 10