Given
v = 2.90 mi/h
x = 1.20 mi
vs = 2.0 mi/h
θ = 25°
Procedure
Part a)
Velocity of the boat with respect to water stream is given as
![\begin{gathered} v_b=v-v_s \\ v_b=(2.90\cdot\sin 25-2.00)\hat{j}+2.90\cdot\cos 25\hat{i} \\ v_b=-0.77\hat{j}+2.62\hat{i} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/g9uuwsbwioxmrtlgpcqmzlnzumijkrb9jw.png)
magnitude of the speed is given as
![\begin{gathered} v_b=\sqrt[]{0.77^2+2.62^2} \\ v_b=2.73mi/h \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/t295qrdng6a7ct37xc8k3pv5hlm80eowz1.png)
Part b)
Time to cross the river is given as:
![\begin{gathered} t=(x)/(v_x) \\ t=(1.2mi)/(2.90\cdot\cos25) \\ t=0.46h \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/uh3iowvm0xiehh8hs1xw1po0cja2q4wup2.png)
Part c)
Distance moved by boat in downstream is given as
![\begin{gathered} x=v_yt \\ x=-0.77\cdot0.46 \\ x=-0.354mi \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/laj2hkvnh2azghzcneqlg74dnc4j9qzwc3.png)
Part d)
In order to go straight, we must net speed along the stream must be zero
so we will have
![\begin{gathered} v\sin \theta=v_s \\ 2.90\sin \theta=2.00_{} \\ \sin \theta=(2.00)/(2.90) \\ \theta=43.60^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9b654gwtillqjxeumonh3ovvuipxd74par.png)