155k views
2 votes
f(x) = log 2(x+3) and g(x) = log 2(3x + 1).(a) Solve f(x) = 4. What point is on the graph of f?(b) Solve g(x) = 4. What point is on the graph of g?(c) Solve f(x) = g(x). Do the graphs off and g intersect? If so, where?(d) Solve (f+g)(x) = 7.(e) Solve (f-g)(x) = 3.

1 Answer

5 votes

Given


\begin{gathered} f(x)=log_2(x+3) \\ and \\ g(x)=log_2(3x+1) \end{gathered}

a)


\begin{gathered} f(x)=4 \\ \Rightarrow log_2(x+3)=4 \\ \Leftrightarrow x+3=2^4 \\ \Rightarrow x+3=16 \\ \Rightarrow x=13 \end{gathered}

The answer to part a) is x=13. The point on the graph is (13,4)

b)


\begin{gathered} g(x)=4 \\ \Rightarrow log_2(3x+1)=4 \\ \Leftrightarrow3x+1=2^4 \\ \Rightarrow3x+1=16 \\ \Rightarrow3x=15 \\ \Rightarrow x=5 \end{gathered}

The answer to part b) is x=5, and the point on the graph is (5,4).

c)


\begin{gathered} f(x)=g(x) \\ \Rightarrow log_2(x+3)=log_2(3x+1) \\ \Rightarrow(ln(x+3))/(ln(2))=(ln(3x+1))/(ln(2))] \\ \Rightarrow ln(x+3)=ln(3x+1) \\ \Rightarrow x+3=3x+1 \\ \Rightarrow2x=2 \\ \Rightarrow x=1 \\ and \\ log_2(1+3)=log_2(4)=2 \end{gathered}

The answer to part c) is x=1 and graphs intersect at (1,2).

d)


\begin{gathered} (f+g)(x)=7 \\ \Rightarrow log_2(x+3)+log_2(3x+1)=7 \\ \Rightarrow log_2((x+3)(3x+1))=7 \\ \Leftrightarrow(x+3)(3x+1)=2^7 \\ \Rightarrow3x^2+10x+3=128 \\ \Rightarrow3x^2+10x-125=0 \end{gathered}

Solving the quadratic equation using the quadratic formula,


\begin{gathered} \Rightarrow x=(-10\pm√(10^2-4*3*-125))/(3*2) \\ \Rightarrow x=-(25)/(3),5 \end{gathered}

However, notice that if x=-25/3,


log_2(x+3)=log_2(-(25)/(3)+3)=log_2(-(16)/(3))\rightarrow\text{ not a real number}

Therefore, x=-25/3 is not a valid answer.

The answer to part d) is x=5.

e)


\begin{gathered} log_2(x+3)-log_2(3x+1)=3 \\ log_2((x+3)/(3x+1))=3 \\ \Leftrightarrow(x+3)/(3x+1)=2^3=8 \\ \Rightarrow x+3=24x+8 \\ \Rightarrow23x=-5 \\ \Rightarrow x=-(5)/(23) \end{gathered}

The answer to part e) is x=-5/23

User Zeeshan Adil
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories