Given:

Let's factor using synthetic division.
Equate the divisor to zero:
x - 5 = 0
x = 5
List all terms of the polynomial: 1, -7, 2, 40
Palce the numbers representing the divisor and dividend into a long division-like configuration
To factor using synthetic division, we have:
Therefore, the factored expression is:

The zeros are also the roots of the polynomial.
The zeros of a polynomial are all the x-values that makes the polynomial equal to zero,
To find the zeros, equate each afctor to zero:
(x - 4) = 0
x = 4
(x + 2) = 0
x = -2
Thus, the zeros are:
x = 4, -2
ANSWER:
