32.6k views
5 votes
Prove the Question according to the theorem of a Circle

Prove the Question according to the theorem of a Circle-example-1
User Shoma
by
8.1k points

1 Answer

4 votes

Given -

P,Q,R and S are 4 points on the circle and PQRS is a cyclic quadrilateral

Prove -


\angle PQR\text{ + }\angle PSR\text{ = 180}

Explanation -


\angle1\text{ = }\angle6\text{ ------\lparen1\rparen \lparen Angles in same segment\rparen}
\angle5\text{ = }\angle8\text{ ------\lparen2\rparen \lparen Angles in the same segment\rparen}
\angle2\text{ = }\angle8\text{ ------\lparen3\rparen \lparen Angles in the same segment\rparen}
\angle7\text{ = }\angle3\text{ -------\lparen4\rparen\lparen Angles in the same segment\rparen}

By using angle sum property of quadrilateral


\angle P\text{ + }\angle Q\text{ + }\angle R\text{ + }\angle S\text{ = 360}
\angle1\text{ + }\angle2\text{ + }\angle3\text{ + }\angle4\text{ + }\angle5\text{ + }\angle6\text{ + }\angle7\text{ + }\angle8\text{ = 360}
(\angle1+\angle2+\angle7+\angle8)+(\angle3+\angle4+\angle5+\angle6)=360

By using equation 1,2,3 and 4


2(\angle3+\angle4+\angle5+\angle6)\text{ = 360}
\angle3+\angle4+\angle5+\angle6\text{ = 180}
(\angle3+\angle4)+(\angle5+\angle6)\text{ = 180}
\angle PQR\text{ + }\angle PSR\text{ = 180}

Hence Proved

Prove the Question according to the theorem of a Circle-example-1
User Timo Kvamme
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories