32.6k views
5 votes
Prove the Question according to the theorem of a Circle

Prove the Question according to the theorem of a Circle-example-1
User Shoma
by
3.1k points

1 Answer

4 votes

Given -

P,Q,R and S are 4 points on the circle and PQRS is a cyclic quadrilateral

Prove -


\angle PQR\text{ + }\angle PSR\text{ = 180}

Explanation -


\angle1\text{ = }\angle6\text{ ------\lparen1\rparen \lparen Angles in same segment\rparen}
\angle5\text{ = }\angle8\text{ ------\lparen2\rparen \lparen Angles in the same segment\rparen}
\angle2\text{ = }\angle8\text{ ------\lparen3\rparen \lparen Angles in the same segment\rparen}
\angle7\text{ = }\angle3\text{ -------\lparen4\rparen\lparen Angles in the same segment\rparen}

By using angle sum property of quadrilateral


\angle P\text{ + }\angle Q\text{ + }\angle R\text{ + }\angle S\text{ = 360}
\angle1\text{ + }\angle2\text{ + }\angle3\text{ + }\angle4\text{ + }\angle5\text{ + }\angle6\text{ + }\angle7\text{ + }\angle8\text{ = 360}
(\angle1+\angle2+\angle7+\angle8)+(\angle3+\angle4+\angle5+\angle6)=360

By using equation 1,2,3 and 4


2(\angle3+\angle4+\angle5+\angle6)\text{ = 360}
\angle3+\angle4+\angle5+\angle6\text{ = 180}
(\angle3+\angle4)+(\angle5+\angle6)\text{ = 180}
\angle PQR\text{ + }\angle PSR\text{ = 180}

Hence Proved

Prove the Question according to the theorem of a Circle-example-1
User Timo Kvamme
by
3.4k points