67.2k views
4 votes
Find the values of sin 0, cos 0, and tan e for the given right triangle. Give the exact values.sin 0=cos 0=tan 0=87

Find the values of sin 0, cos 0, and tan e for the given right triangle. Give the-example-1
User Mike Ward
by
5.4k points

1 Answer

2 votes

We can use the definition:


\begin{gathered} \sin \theta=\frac{\text{opposite }}{\text{hypotenuse}} \\ \\ \cos \theta=\frac{\text{adjcent}}{\text{hypotenuse}} \\ \\ \tan \theta=\frac{\text{opposite}}{\text{adjacent}} \end{gathered}

Looking at the figure we can see the values:

But we don't have the hypotenuse value, we must use the Pythagorean theorem to find it


\begin{gathered} \text{hypotenuse = }\sqrt[]{7^2+8^2} \\ \\ \text{hypotenuse = }\sqrt[]{113} \end{gathered}

Now we have the hypotenuse we can find all values


\begin{gathered} \sin \theta=\frac{\text{opposite }}{\text{hypotenuse}}=\frac{8}{\sqrt[]{113}} \\ \\ \cos \theta=\frac{\text{adjcent}}{\text{hypotenuse}}=\frac{7}{\sqrt[]{113}} \\ \\ \tan \theta=\frac{\text{opposite}}{\text{adjacent}}=(8)/(7) \end{gathered}

Find the values of sin 0, cos 0, and tan e for the given right triangle. Give the-example-1
User Rafdro
by
5.7k points