113k views
0 votes
The convex polygon below has 8 sides. Find the value of x.140°11801270153013401561170

The convex polygon below has 8 sides. Find the value of x.140°11801270153013401561170-example-1

1 Answer

5 votes

x=135

Step-by-step explanation

The formula for calculating the sum of interior angles in a polygon is ( n − 2 ) × 180 ∘ where is the number of sides.


(n-2)\cdot180=\text{ Sum of internal angles}

Step 1

find the sum of the internal angles in the given polygon

Let

number of sides = 8

Now, replace


\begin{gathered} (n-2)\cdot180=\text{ Sum of internal angles} \\ (8-2)\cdot180=\text{ Sum of internal angles} \\ 6\cdot180=\text{Sum of internal angles} \\ 1080=\text{Sum of internal angles}\rightarrow equation(1) \end{gathered}

Step 2

now, we have the other angles, so

sum of internal angles is:


\text{angle}1+\text{angle}2+\text{angle}3+\text{angle}4+\text{angle}5+\text{angle}6+\text{angle}7+\text{angle}8=\text{ sum of the internal angles}

replace


\begin{gathered} 127+140+118+153+156+117+x+132=\text{ Sum of internal angles} \\ x+943=\text{Sum of internal angles}\rightarrow equation\text{ (2)} \end{gathered}

hence


x+945=1080

subtract 945 in both sides to solve for x


\begin{gathered} x+945=1080 \\ x+945-945=1080-945 \\ x=135 \end{gathered}

i hope this helps you

User Aryak Sengupta
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.