17 Liters
Step-by-step explanationStep 1
find the total area to paint
we need to assume the floor wont be painted, so the total are to paint is
the are of a rectangle is gieven by:
![Area=length*width](https://img.qammunity.org/2023/formulas/mathematics/high-school/6szy185aebijg8izt78orklzoxau4x46iz.png)
so, the total area will be
![\begin{gathered} total\text{ surface area=\lparen20*10\rparen+2\lparen20*8\rparen+2\lparen10*8\rparen} \\ total\text{ surface area=200+2\lparen160\rparen+2\lparen80\rparen} \\ total\text{ surface area=200+320+160} \\ total\text{ surface area=680 m}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2q0lg4a07lh0i9gq02xytvdczu0ixuk7an.png)
so , the area to paint is 680 square meters
Step 2
finally, to know the number of Liters need , divide the amount ( total area) by the rate of the paitn, so
![\begin{gathered} paint\text{ needed=}\frac{total\text{ area}}{rate\text{ paint}} \\ paint\text{ needed=}(680m^2)/(40(m^2)/(L))=17Liters \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/52x36pti189epq8ad1v27q63afvpgvfv2b.png)
so, the total paint needes is 17 Liters, and paint comes in 1-L cans, so
![\begin{gathered} 17\text{ Liters} \\ 17\text{L}\imaginaryI\text{ters\lparen}\frac{1\text{ Can}}{1\text{ L}})=17cans \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b32lh5ex54zl4g17shapkd3a1bjv45f2si.png)
therefore, the answer is
17 Liters
I hope this helps you