Given:
Speed of current (y)= 6 km/hour
Distance = d km
Speed of boat in still water = x km/hour
Speed of the cruiser with the current= (x+6) km/hour
Speed of the cruiser against the current= (x-6) km/hour
![\text{Time to travel with the stream=}(d)/(x+6)](https://img.qammunity.org/2023/formulas/mathematics/college/knxsb30832gmkwgh5t91n6u2uxu17rudx7.png)
![3=(d)/(x+6)](https://img.qammunity.org/2023/formulas/mathematics/college/np7qwyuah2ta7l6owftl134namuzcnl32o.png)
![3\mleft(x+6\mright)=d](https://img.qammunity.org/2023/formulas/mathematics/college/kusthy4pkziy86rz8j53izz3xj6pvaksxx.png)
![d=3x+18\ldots.\text{ (1)}](https://img.qammunity.org/2023/formulas/mathematics/college/euwvcg4c0t5uw054kdab9c04lspmae17h1.png)
![\text{Time to travel }against\text{ the stream=}(d)/(x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/10bycvutdaqx0zx8p9a8kirlitn7vczdxs.png)
![7=(d)/(x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/yl89g9xw94nlzv3wg7csgcdgk2zx1yrgbi.png)
![d=7x-42\ldots.\text{ (2)}](https://img.qammunity.org/2023/formulas/mathematics/college/d8zteyszkyqospukx25tw2d621wuon9nds.png)
From equation (1) and (2)
![7x-42=3x+18](https://img.qammunity.org/2023/formulas/mathematics/college/yrxp87oqcyeinfjhx0ayvy5b9517kpi1qw.png)
![7x-3x=18+42](https://img.qammunity.org/2023/formulas/mathematics/college/97si1892glwk6ksgbid5n0qw4076y59irc.png)
![4x=60](https://img.qammunity.org/2023/formulas/mathematics/college/a3uczallpmlt0odtkodsb0eft7qg7d05v8.png)
![x=15](https://img.qammunity.org/2023/formulas/mathematics/high-school/hetdy11v299nr6etsm9sl6zmox1lijqo61.png)
Therefore the speed of the without a current is 15km/hour.