First let's calculate the slope of the straight line
For slopes that are perpendicular to each other we can use the following formula
![m1m2=-1](https://img.qammunity.org/2023/formulas/mathematics/college/8o2dazvvpu0jasrriutc0ghqwgy9ikot7i.png)
Where
m1 = original slope
m2 = perpendicular slope
![\begin{gathered} m2=-(1)/(m1) \\ m2=-(1)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8qu15gmtco2qjdo9oqnarf6a9hhapzivdd.png)
Now for the intersection
![\begin{gathered} b=y-mx \\ b=4-((-1)/(5))\cdot(-5) \\ b=4-1 \\ b=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rmei4kqioidjov9agdrsq54m7dmv6dve71.png)
The equation of the line that passes through the point (-5,4) with a slope of -1/5 is
![y=-(1)/(5)x+3](https://img.qammunity.org/2023/formulas/mathematics/college/d3k4p0pg7jaghmgfgrnr37jchf8bqj1ywg.png)