A.
The question asks us to find the probability of getting at least 4 or an odd number after throwing a die.
This is easily gotten using the OR probability of two events which states:
To get at least 4, it means the possible values we can have are: 4, 5, 6.
To get an odd number, it means the possible values we can have are: 1, 3, 5.
From both set of possibilities, 5 is common. We need to subtract the probability of getting a 5 in both situations to prevent duplication.
Thus, we can compute each probability:
Therefore, the probability of getting at least 4 or an odd number is 5/6
B:
This part of the question asks us to find the probability of rolling an even number or a number at most 5.
We, once again, take a look at the possibilities to solve this question.
Possibilities of getting an even number are: 2, 4, or 6
Possibilities of getting at most 5 are: 1, 2 , 3, 4, 5.
Therefore, we can compute the probabilities as: