Step-by-step explanation
Since the line segment is 7 units long, we can apply the following relationship:
(x_1+ 7 , y_1) = (x_2 , y_2)
![(-5+7)=2](https://img.qammunity.org/2023/formulas/mathematics/college/gakoa0dqvcrapvffsktmgx5jvfe58y22lt.png)
The coordinate of the endpoint is as follows:
![(x_(endpoint),y_(endpoint))=(2,4)](https://img.qammunity.org/2023/formulas/mathematics/college/6kktnw8g9hc3v7oj13i8kegcau08pyywpu.png)
We can get to this point by applying the distance formula as follows:
![distance=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/hvoexpi6iey1mlhd81ydtkf09igvgrv0y6.png)
Applying the square power to both sides:
![7^2=(x_2-(-5))^2+(y_2-4)^2](https://img.qammunity.org/2023/formulas/mathematics/college/1iffvc094et1knz4zyb9lffzi92a5rixwe.png)
Subtracting numbers:
![49=(x_2+5)^2+(y_2-4)^2](https://img.qammunity.org/2023/formulas/mathematics/college/i71qpvs9evh81rrirsv5fn6uj8ugfx18jr.png)
Now, if the x_2 coordinate is -3, the value of y_2 will be as follows:
![49=(-3+5)^2+(y_2-4)^2](https://img.qammunity.org/2023/formulas/mathematics/college/vlbnlpgz8d9r6bfymoxnpwsy7kpinv80uw.png)
![49=4+(y_2-4)^2](https://img.qammunity.org/2023/formulas/mathematics/college/nx8h1ykr6egk3ok6x4oxkr6f2gr0q3i8i3.png)
Subtracting -4 to both sides:
![45=(y_2-4)^2](https://img.qammunity.org/2023/formulas/mathematics/college/ak45915hnbs9t6k3iylmjjs2t5qrurwhpd.png)
Applying the square root to both sides:
![√(45)=y_2-4](https://img.qammunity.org/2023/formulas/mathematics/college/mmpy4c9h03p17rvaia3k36u4c96f2jbqic.png)
Adding +4 to both sides:
![4+√(45)=y_2](https://img.qammunity.org/2023/formulas/mathematics/college/akstayj1znbbeq107bn5hr4n2pao4tny6x.png)
In conclusion, the equation to get the coordinate from a given point is,
![49=(x_(2)+5)^(2)+(y_(2)-4)^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/kahf62onsxuemv6n4uzizfirbb48su9akl.png)