Step-by-step explanation:
The first thing is to state the coordinates of Quadrilateral PQRS
P (5, 5), Q (3, 5), R (3, 1), S (5, 1)
Then we find the distance between two points using the distance formula
It is a quadrilateral, meaning the two lengths are equal. Like wise the two widths are equal.
length PQ = length SR = 2
Length QR = length PS = 4
Scale factor = 3/4
Scale factor = corresponding side of new image/ corresponding side of original image
PQRS = original image, P'Q'R'S' = new image
3/4 = P'Q'/PQ
3/4 = P'Q'/2
P'Q' = 2(3/4) = 6/4 = 3/2
Since P'Q' = S'R'
S'R' = 3/2
3/4 = Q'R'/QR
3/4 = Q'R'/4
Q'R' = 3/4 (4) = 12/4 = 3
Since Q'R' = P'S
P (5, 5), Q (3, 5), R (3, 1), S (5, 1)
PQRS to P'Q'R'S' = 3/4(
P' = 3/4 (5, 5) = (15/4, 15/4)
Q' = 3/4 (3, 5) = (9/4, 15/4)
R' = 3/4 (3, 1) = (9/4, 3/4)
S' = 3/4 (5, 1)