As ABCD is congruent withEFGH, it means that both figures have the same mesarurements, even if their orientation is different.
Then, you have that the angle in A is congruente with the angle in E, the angle B is congruent with the angle F, the angle C is congruent with the angle G, the angle D is congruent with the angle H.
![\begin{gathered} \angle A=\angle E \\ \angle B=\angle F \\ \angle C=\angle G \\ \angle D=\angle H \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/88qc8wk7xp2c7tvnznoag59j1h7r3ryouz.png)
Then:
![3x^2-4x+10=16](https://img.qammunity.org/2023/formulas/mathematics/college/9ozu4tvj9n3l2054aqn358r1uemmayc14y.png)
You solve the x from the equation above:
1. Equal the equation to 0
![\begin{gathered} 3x^2-4x+10-16=0 \\ 3x^2-4x-6=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4fwtebi5ohg4rcez6mjdehnazbpdrca26a.png)
2. Use the quadratic equation:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
![\begin{gathered} x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4(3)(-6)}}{2(3)} \\ x=\frac{4\pm\sqrt[]{16+72}}{6} \\ x=\frac{4\pm\sqrt[]{88}}{6} \\ x_1=\frac{4-\sqrt[]{88}}{6},x_2=\frac{4+\sqrt[]{88}}{6} \\ x_1=-0.896,x_2=2.230 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vvja991k7vpysiwkbpsmyp7k025tmiuobp.png)
3. As you get two solutions for x. You need to prove which is the right solution:
with x1:
![\begin{gathered} 3x^2-4x+10=16 \\ 3(-0.896^2)-4(-0.869)+10=16 \\ 11.17\\e16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gkstkx5qe75gik80u04mxd67d3mgwc0ns5.png)
with x2:
![\begin{gathered} 3x^2-4x+10=16 \\ 3(2.23^2)-4(2.23)+10=16 \\ 15.99\approx16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8z5vwiq636x27adfzq2bk630mplkjr5yvx.png)
As you can see the right solution is x2, because if you subtitute the x in the equation of the angle A that must be equal to 16, just the x2 gives an approximate value to 16.
Then, the solution for the x is x=2.23