168k views
5 votes
Use a sum or difference identity to find the exact value of :

Use a sum or difference identity to find the exact value of :-example-1
User Shaffe
by
8.5k points

1 Answer

3 votes

\begin{gathered} \sin 285\text{ } \\ 285\text{ can be split into 225 and 60} \end{gathered}
\sin (225+60)

Using the rule


\sin (x+y)=\sin x\cos y+\cos x\sin y
\begin{gathered} \sin (225+60)=\sin 225\cos 60+\cos 225\sin 60 \\ \end{gathered}

Sine is negative in the third quadrant therefore,


\begin{gathered} -(\sin 45)\cos 60+\cos 225\sin 60 \\ \sin \text{ 45=}\frac{\sqrt[]{2}}{2}\text{ then the negative sign} \\ -\frac{\sqrt[]{2}}{2} \\ -\frac{\sqrt[]{2}}{2}\cos 60+\cos 225\sin 60 \\ \cos \text{ 60=}(1)/(2) \\ -\frac{\sqrt[]{2}}{2}((1)/(2))+\cos 225\sin 60 \end{gathered}

Let us find the other side


\begin{gathered} \cos \text{ 45=}\frac{\sqrt[]{2}}{2} \\ cos\text{ is negative in the third quadrant } \\ -\frac{\sqrt[]{2}}{2} \\ \sin \text{ 60=}\frac{\sqrt[]{3}}{2} \\ \end{gathered}

Bring everything together


\begin{gathered} -\frac{\sqrt[]{2}}{2}((1)/(2))-\frac{\sqrt[]{2}}{2}(\frac{\sqrt[]{3}}{2}) \\ -\frac{\sqrt[]{2}}{4}-\frac{\sqrt[]{6}}{4}=\frac{-\sqrt[]{2}-\sqrt[]{6}}{4}=-0.965925826\ldots... \end{gathered}

User Andreas Lundgren
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories