The Solution:
Given the graph below:
We are required to find the perimeter of the triangle LMN rounded to the nearest unit.
Step 1:
Find the distance LM, where L(-3,2) and M(3,5)
By the formula for distance between two points, we have
![LM=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/mbbjvz5jrqb30g0rhuegw1r2jfmknz03rq.png)
Where,

Substituting, we get
![LM=\sqrt[]{(3--3)^2+(5-2)^2}=\text{ }\sqrt[]{6^2+7^2}=\text{ }\sqrt[]{85}=9.2195](https://img.qammunity.org/2023/formulas/mathematics/college/29hodrhuekga3vsrt8xas8ap4i1a0qbc1k.png)
Step 2:
Find the distance LN:

Step 3:
Find the distance MN, where M(3,5) and N(9,2)
![MN=\sqrt[]{(9-3)^2+(2-5)^2}=\text{ }\sqrt[]{6^2+(-3)^2}=\text{ }\sqrt[]{45}=6.7082](https://img.qammunity.org/2023/formulas/mathematics/college/fpw371zo4p0m9ys8ppnejykinl3kmcaj4e.png)
Step 4:
The perimeter is:

Therefore, the correct answer is 28 units.