Given: The points a line intersects as shown below
![\begin{gathered} Point1:(2,2) \\ Point2:(-1,20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/48e6tbkkvf9dei1qjteu0spsmwqpp57qqa.png)
To Determine: The slope of the line in its simplest form
Solution
The formula for finding the slope of two points is as shown below
![\begin{gathered} Point1:(x_1,y_1) \\ Point2:(x_2,y_2) \\ slope=(y_2-y_1)/(x_2-x_1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ekfyos2f7bbulpuurtirrgjvnvounxw6x3.png)
Let us apply the formula to the given points
![\begin{gathered} Points1(x_1,y_1)=(2,2) \\ Point2(x_2,y_2)=(-1,20) \\ slope=(20-2)/(-1-2) \\ slope=(18)/(-3) \\ slope=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/quakpbvxx314kperxu1k5abznqs2na765z.png)
Hence, the slope of the line in simplest form is -6