Simplifying a fraction
We want to simplify the following expression:
![\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}](https://img.qammunity.org/2023/formulas/mathematics/college/cinvw8xnqqxkfr9nza0alkaexm6jlyxnd6.png)
This means that we want to "remove" the denominator".
STEP 1
If we observe the denominator:
![(2-\sqrt[]{3})](https://img.qammunity.org/2023/formulas/mathematics/college/4biewwolrnmtdrsui726c7pwthbha0lb36.png)
If we multiply it by
2 + √3, then
![\begin{gathered} (2-\sqrt[]{3})(2+\sqrt[]{3}) \\ =4-\sqrt[]{3}^2=4-3=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y5l9nrysdciz48esd8hc71zr9qfjfo05ki.png)
STEP 2
We know that if we multiply both sides of a fraction by the same number or expression, the fraction will remain the same, then we multiply both sides by 2 + √3:
![\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}=\frac{(2+\sqrt[]{3})(2+\sqrt[]{3})}{(2-\sqrt[]{3})(2+\sqrt[]{3})}](https://img.qammunity.org/2023/formulas/mathematics/college/42qr635hhjm1ar35aim4o3uugqha67isym.png)
For the denominator, as we analyzed before
![(2-\sqrt[]{3})(2+\sqrt[]{3})=1](https://img.qammunity.org/2023/formulas/mathematics/college/st55ux48g77wnhn713xo4kckngrk69y7j2.png)
For the denominator:
![(2+\sqrt[]{3})(2+\sqrt[]{3})=(2+\sqrt[]{3})^2](https://img.qammunity.org/2023/formulas/mathematics/college/rf2wz5sxp0otwu7p1mh6w64vsnraezbe64.png)
Then,
![\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}=\frac{(2+\sqrt[]{3})(2+\sqrt[]{3})}{(2-\sqrt[]{3})(2+\sqrt[]{3})}=\frac{(2+\sqrt[]{3})^2}{1}=(2+\sqrt[]{3})^2](https://img.qammunity.org/2023/formulas/mathematics/college/m0py8v54qtqynm0mzjx69hlzncy6cnfy8e.png)
STEP 3
Now, we can simplify the result:
Answer: 7+4√3