45.8k views
3 votes
Simplify 2+^3 ÷ 2- ^3

User Mightypile
by
4.6k points

1 Answer

3 votes
Simplifying a fraction

We want to simplify the following expression:


\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}

This means that we want to "remove" the denominator".

STEP 1

If we observe the denominator:


(2-\sqrt[]{3})

If we multiply it by

2 + √3, then


\begin{gathered} (2-\sqrt[]{3})(2+\sqrt[]{3}) \\ =4-\sqrt[]{3}^2=4-3=1 \end{gathered}

STEP 2

We know that if we multiply both sides of a fraction by the same number or expression, the fraction will remain the same, then we multiply both sides by 2 + √3:


\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}=\frac{(2+\sqrt[]{3})(2+\sqrt[]{3})}{(2-\sqrt[]{3})(2+\sqrt[]{3})}

For the denominator, as we analyzed before


(2-\sqrt[]{3})(2+\sqrt[]{3})=1

For the denominator:


(2+\sqrt[]{3})(2+\sqrt[]{3})=(2+\sqrt[]{3})^2

Then,


\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}=\frac{(2+\sqrt[]{3})(2+\sqrt[]{3})}{(2-\sqrt[]{3})(2+\sqrt[]{3})}=\frac{(2+\sqrt[]{3})^2}{1}=(2+\sqrt[]{3})^2

STEP 3

Now, we can simplify the result:


\begin{gathered} (2+\sqrt[]{3})^2=(2+\sqrt[]{3})(2+\sqrt[]{3}) \\ =2^2+2\sqrt[]{3}+(\sqrt[]{3})^2+2\sqrt[]{3} \\ =4+4\sqrt[]{3}+3 \\ =7+4\sqrt[]{3} \end{gathered}Answer: 7+4√3

User RDavey
by
4.0k points