Mathematics → Solid Figures → Volume
The volume of a cylinder is:
![V=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/axumboiozoejyargdo4sskcbefipwsp4rb.png)
In this question,
r = 2 ft (4/2 =2)
h = 5 ft
Then, the volume of the cylinder is (Vc):
![\begin{gathered} Vc=\pi *2^2*5 \\ Vc=\pi *4*5 \\ Vc=20\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o8enuetgra1xuudhmasxhavil72szycipc.png)
Using π = 3:
![\begin{gathered} Vc=3*20 \\ Vc=60ft^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/44sfl40vxt2jg6lx3z1v06qhk9i90bcf32.png)
The volume of a rectangular prism (Vr) is:
![Vr=lwh](https://img.qammunity.org/2023/formulas/mathematics/high-school/qrakhsrvo39elkn8ywtdhqm0n37kdbwgyj.png)
In this question:
l = 9 ft
w = 5 ft
h = 5 ft
Then, the volume of the rectangular prism is:
![\begin{gathered} V=9*5*5 \\ V=225ft^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ws305xa4np4ayo629kx1dj7fgweod38ic2.png)
The volume of the object (V) is the sum of the volumes:
![\begin{gathered} V=Vc+Vr \\ V=60+225 \\ V=285ft^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yw93gg1e9uk6tj5hcumzxetwo2c8rwb4dk.png)
Answer: 285 ft³.