Answer:
From the question,
![\begin{gathered} P_0=9 \\ r=0.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pqviyidjlr98ibs7xxup7tgqzvjo1v153r.png)
The formula for the growth rate will be calculated using the formula below
![\begin{gathered} F=P(1+r)^n \\ F=\text{future value} \\ P=present\text{ value} \\ r=\text{growth rate} \\ n=nu\text{mber of times per period} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w82irr046u93cvv7bab3c0ame3s3z6s9mv.png)
In,
![\begin{gathered} P_0,n=0 \\ P_1,n=1 \\ P_2,n=2 \\ P_9,n=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/43tp99pwn2th5q8r1xukgnxe6t3mtujsti.png)
Given that
![\begin{gathered} P_0=9 \\ F=P(1+r)^n \\ P_0=9(1+0.4)^0 \\ P_0=9*1 \\ P_0=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hmghwauhjmgyw2mwp2vtu4j88259i5mysk.png)
![\begin{gathered} F=P(1+r)^n \\ P_1=9(1+0.4)^1 \\ P_1=9*1.4 \\ P_1=12.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bsod5vi7jd8589rsfjpynpy7p9s3qdv9pm.png)
Hence,
P1 = 12.6
Also, we will have P2 to be
![\begin{gathered} F=P(1+r)^n \\ P_2=9(1+0.4)^2 \\ P_2=9*1.4^2 \\ P_2=17.64 \\ P_2\approx1\text{ decimal place} \\ P_2=17.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t243e95jdvm3zmkv3dh4jwjn1q6k22521k.png)
Hence,
P2 = 17.6
Therefore,
The formula for Pn will be represented below as
![\begin{gathered} P_n=9(1+0.4)^n \\ P_n=9(1.4)^n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mag3y4z6idh39f050ftcmf08m4r4gotpu1.png)
The explicit formula for Pn will be
![P_n=9(1.4)^n](https://img.qammunity.org/2023/formulas/mathematics/high-school/l5urzq8xlcwckdi60u1lximfl88qon53e5.png)
To figure out the values of P9. we will substitute the value of n=9 in the equation below
![\begin{gathered} P_n=9(1.4)^n \\ P_9=9(1.4)^9 \\ P_9=185.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jcsewancif5t112yq8tmhvawd2135n3xuq.png)
Hence,
P9 = 185.9