Given: An arithmetic sequaence has the following parameters
![\begin{gathered} a_9=17 \\ d=-2.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yimtivw8ez4xlqkd6yqu9ufg31p2ayaxld.png)
To Determine: The sum of the first 31st term.
Please note that the sum of the first 31st term is represented as
![S_(31)=\text{ sum of the first 31st term}](https://img.qammunity.org/2023/formulas/mathematics/college/m6hlzdfy0j3oy8rvcl4sqn25gwd0o1ekwy.png)
The formula for the finding the n-term of an arithmetic sequence (AP) is
![\begin{gathered} a_n=a+(n-1)d \\ \text{Where} \\ a_n=n-\text{term} \\ a=\text{first term} \\ d=\text{common difference} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l9o9iftakbvu6p7lj6k15ivgbw5cyyz9za.png)
Since, we are given the 9th term as 17, we can calculate the first term a, as shown below:
![\begin{gathered} a_9=17 \\ \text{Substituting into the formula} \\ a_9=a+(9-1)d \\ a_9=a+8d \\ \text{Therefore:} \\ a+8d=17 \\ d=-2.1 \\ a+8(-2.1)=17 \\ a-16.8=17 \\ a=17+16.8 \\ a=33.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wg24y9zqb8ejxhy4v9xy6a3bdo0dbpvy66.png)
Calculate the sum of the first 31st term.
The formula for finding the first n-terms of an arithmetic series is given as
![S_n=(n)/(2)(2a+(n-1)d)](https://img.qammunity.org/2023/formulas/mathematics/college/999tr0bbwd6nzd4ivmm8898rpj22q6e4cj.png)
We are given the following:
![a=33.8,n=31,d=-2.1](https://img.qammunity.org/2023/formulas/mathematics/college/ds3fy0h75dbk9nd81ewifi262m2j5nb4h8.png)
Substitute the given into the formula:
![\begin{gathered} S_(31)=(31)/(2)(2(33.8)+(31-1)-2.1) \\ S_(31)=15.5(67.6)+(30)-2.1) \\ S_(31)=15.5(67.6-63) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nz09dxusuvt1mt7b10uwfw1qkfcp7ishyw.png)
![\begin{gathered} S_(31)=15.5(4.6) \\ S_(31)=71.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/af7i7tk9tjszbs2rbweedh4tksptxdz078.png)
Hence, the sum of the first 31st term of the A.P is 71.3, OPTION D