Given:
Consider the given graph as a reference of the solution.
To find:
![-3(u\cdot v)](https://img.qammunity.org/2023/formulas/mathematics/college/gdulymfghudh28ipdhz3l29y5ph1708791.png)
Step-by-step explanation:
By analyzing the graph, we can define the coordinate of vector u and v:
![\[\begin{align} & \vec{u}=(-8,-9)-(0,0)=(-8,-9) \\ & \vec{v}=(3,7)-(0,0)=(3,7)\end{align}\]](https://img.qammunity.org/2023/formulas/mathematics/college/wsml7ythgnrii5dell21zhtaa9eec6j7f7.png)
Now, let perform the dot product of two vectors,
![\begin{gathered} u\cdot v=(-8,-9)\cdot(3,7) \\ u\cdot v=(-8)(3)+(-9)(7) \\ u\cdot v=-24-63 \\ u\cdot v=-87 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2idtn9slg8erwqw06akr96zoyljluwytxg.png)
Now, perform the required operation,
![\begin{gathered} -3(u\cdot v) \\ =-3(-87) \\ =261 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qpr3jrkfbe3pd83igyk79nicdhc3agc5zr.png)
Final answer:
Hence, the required solution is:
![-3(u\cdot v)=261](https://img.qammunity.org/2023/formulas/mathematics/college/80fskgupndlbftyobjelu5vrzddjzomlfd.png)