193k views
4 votes
Find all critical points of the function f(x) = x^3 + 5x^2 - 7x - 3.The critical point(s) is(are) =

1 Answer

3 votes

We are given:


f(x)=x^3+5x^2-7x-3

Now, we know that in order to determine the critical points we derivate and the derivative is then equal to 0, that is:


f^(\prime)(x)=3x^2-10x-7=0

Now, we solve for x, that is:


3x^2+10x-7=0\Rightarrow x=\frac{-(10)\pm\sqrt[]{(10)^2-4(3)(-7)}}{2(3)}
\Rightarrow\begin{cases}x=-\frac{5+\sqrt[]{46}}{3}\Rightarrow x\approx-3.9 \\ \\ x=\frac{-5+\sqrt[]{46}}{3}\Rightarrow x\approx0.6\end{cases}

So, the critical points of the function are:


\begin{cases}x=-\frac{5+\sqrt[]{46}}{3} \\ \\ x=\frac{-5+\sqrt[]{46}}{3}\end{cases}

Now, we determine the y-components of the points, that is:


\begin{cases}f(-\frac{5+\sqrt[]{46}}{3})=(-\frac{5+\sqrt[]{46}}{3})^3+5(-\frac{5+\sqrt[]{46}}{3})^2-7(-\frac{5+\sqrt[]{46}}{3})-3\Rightarrow f(-\frac{5+\sqrt[]{46}}{3})=41.03608735 \\ \\ f(\frac{-5+\sqrt[]{46}}{3})=(\frac{-5+\sqrt[]{46}}{3})^3+5(\frac{-5+\sqrt[]{46}}{3})^2-7(\frac{-5+\sqrt[]{46}}{3})-3\Rightarrow f(\frac{-5+\sqrt[]{46}}{3})=-5.184235498\end{cases}

So, the two critical points are:


(-\frac{5+\sqrt[]{46}}{3},41.03608735)

and:


(\frac{-5+\sqrt[]{46}}{3},-5.184235498)

This can be seing as follows:

Find all critical points of the function f(x) = x^3 + 5x^2 - 7x - 3.The critical point-example-1
User David Ham
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories